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Magnetic response of local moments in disordered metals 
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Physical and Theoretical Chemisq Labaratory, Oxford University, South Parks Road, Oxford 
OX1 3QZ UK 

Received 16 May 1995 

Abstract We study the magnetic response properties of both site and spatially disordered 
Anderson-Hubbard models via a random-phase-type appmximation for collective excitations 
about stable, inhomogeneous mean-held ground states. For the site-disordered model, WO- 

temperature transitions between paramagnetic, disordered antiferromagnetic and spin-glass-like 
ground states are examined. Within bmken symmetry phases, a micmswpic picture of the 
response of the inhomogeneous distribution of local magnetic moments to an external held is 
obtained, and the'role of disorder in leading to a strong site differential enhancement in local 
susceptibilities is highlighted. 

1. Introduction 

The interplay between disorder and electron interactions, in governing electronic and 
magnetic properties of disordered solids, is a fundamental problem in condensed matter 
theory to which a rich variety of theoretical approaches has been developed over the last 
decade or more; see e.g. [I, 21 and references therein. Central to this endeavour is an 
understanding of the role of, local magnetic  moments occumng in disordered metals with 
delocalized charge carriers, each arising from the same 'set' of electrons. 

Among  the^ simplest models with which to investigate these matters are oneband 
Anderson-Hubbard models (AHM), specified by the Hamiltonian 

H = cini, - C'tijc/,cjo + U ni+ni- (1.1) 
i n  i .j .0 

(in standard notation), with interactions embodied in the on-site Hubbard U. The quenched 
disorder may enter either via (a) site disorder [3-91 in the distribution of site energies [ci] 
or (b) spatial disorder [1&12] in the site centres of mass, leading to off-diagonal disorder 
in the oneelectron transfer matrix elements ( t i j ] .  Both types of AHM (at half filling) will 
be considered in this paper, with an emphasis on the former. 

The general strategy we adopt is in principle straightforward, and twofold. First, for 
a given disorder realization at any chosen point in the disorder-interaction plane, to treat 
disorder exactly (via numerical study) and ascertain mean-field 'saddle point' solutions at 
the level of spin-rotationally invariant,  fully^ unrestricted Hartree-Fock (UHF), and second, 
to examine the response properties of, and collective excitations about, the broken symmetry 
disordered mean-field states via a random phase approximation (RPA) in its general form; 
this enables, via loop expansions, subsequent study of the feedback of quantum spin 
fluctuations. Such an approach is natural in many respects, and has proven very successful 
for the half-filled pure Hubbard model on the d = 2 dimensional square lattice, even (and 
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particularly) in the strong-coupling regime; see e.g. [13,14]. A central point is of course 
the stability of the broken symmetry mean-field state: only if this is properly stable against 
particle-hole excitations will fluctuations about it, treated at RFA level, be bounded [15]; 
and a necessary condition for such is the use of spin-rotationally invariant UHF. 

In a previous paper [8] we have studied, at UHF level alone, a site-disordered AHM 
on a d = 3 simple cubic lattice, with nearest-neighbour hopping matrix elements f j j  = f ,  
and with the site energies regarded as independent random variables drawn from a common 
Gaussian dishibution, g(c), of variance A'. The model is specified simply by (i) the scaled 
interaction strength 0 = U / B  with B = 12t the electronic bandwidth of the unpemrbed 
(U = 0 = A) simple cubic lattice, and (ii) A = A/& a scaled measure. of the site disorder. 
At half filling, magnetic and electric phases in the (& 6) plane were deduced hy direct 
sampling of a range of possible broken symmetry UHF states. Particular emphasis was 
given to site differential resolution of a wide range of physical properties, which is central 
in developing a microscopic picture of the interplay between disorder and interactions; even 
at mean-field level this leads, for example, to a suggestion of two-fluid-like segregation of 
charge carriers and local magnetic moments. 

,In the present paper we study the corresponding magnetic response properties of the 
disordered local moment phases, at RPA level. Linear response properties of the mean-field 
states, and the generalized RFA susceptibility matrix, are outlined and discussed formally 
in section 2. In section 3 we analyse both the phase boundary to local moment formation 
and the disordered antiferromagneuspin glass transition via an RFA stability analysis. We 
turn to the inhomogeneous magnetic response of the system in section 4, as reflected in 
the distribution of local magnetic susceptibilities, and focus on the evolution with disorder 
(at constant 6) as it is increased through the metal towards a metal-(gapless) insulator 
transition. Disorder, in producing a range of local environments, leads naturally to local 
moment formation on an inhomogeneous scale. In addition, however, while the mean-field 
local moments themselves vary only little as disorder is increased, a strong disorder-induced 
enhancement of the local susceptibilities for moment canying sites is found. This has 
significant implications for observable Knight shifts and the bulk magnetic susceptibility. 
To ensure the findings are not specific to the site-disordered AHM, we discuss briefly a 
corresponding study of the spatially disordered model directly applicable to e.g. doped 
semiconductors. 
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2. UHF+RPA 

For any given disorder realization, the fully unrestricted Harttee-Fock (UHF) Hamiltonian 
corresponding to a generic AHM is given by 

HO = C E i n i ,  - ~ ' f i j C ~ , C j ,  +U C { ; l i i n i  - 2gj . Si) (2.1 ) 
;,o i.i.0 i 

where ni = E, ni, is the local charge operator, Si is the (vector) spin operator for site i, and 
the overbars denote an expectation value over the T = 0 UHF ground state. The UHF state 
is of course a single determinant, formed by occupying the UHF singleparticle states {lye),)) 
up to the Fermi level, F .  Quasiparticle states are expanded in terms of the local site spin- 
orbitals [l&)], namely lYa) = Ei,~a~a,l&); and note that the IW,) are not constrained 
to be pure spin-orbitals (as is necessary to guarantee spin-rotational invariance). Since 
H o  H ({ni, Si)), a self-consistent solution is naturally required: H O ~ W , )  = E.~W,) ,  0 -. - 
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together with the self-consistency equations 

Si, = A ! , ~ ’ A ~ ,  (2.20) 
.Z<F 

where A;, is the column vector 

(2.2b) 

(2.2c) 

and U@ ( p  = x, y ,  z )  are the Pauli matrices. 
These equations specify the most general, spin-rotationally invariant, form of UHF. 

We refer to this as ‘Heisenberg spin’ UHF meaning that, in a broken symmetry local 
moment regime, the possibility of non-collinear mean-field spin configurations is permitted. 
Self-consistent broken symmetry UHF solutions obtained thereby may, however, be purely 
king-lie with fully collinear mean-field spinsflocal moments. This occurs for the site- 
disordered model at half filling, and throughout the disorder-interaction plane (A, c) [SI. 
The simplifications arising in this case will be discussed in section 2.2; for the present we 
consider the general case of Heisenberg-lie mean-field solutions. 

2.1. Linear response 

Collective excitations about the UHF state may be obtained by considering directly the 
linear response of any UHF state to the application, at time t = 0, of an arbitrary 
space. and time-dependent extemal magnetic field, p h i @ ) ) ,  via the Beman codpling 
H. = g c s i  * exhi(t), with g = 2 the electronic g-factor. F o r ~ t  z 0, the expectation 
values entering equation (2.1) naturally acquire a time dependence, expressed by 

&) = si + S S ( i )  i i i ( t )  = ni + S E i ( t ) .  (2.3) 

The Hamiltonian may then be written as 

H ( t )  = Ho + HI@) (2.4 

with i@ the unperturbed UHF Hamiltonian (2.1). HI@) carries all the t dependence and 
is given by 

Here, hi(#) is the total magnetic field at site i, consisting of the external plus an induced 
(internal) field, 

(2.6) 

where infhi(f) = -U&gi(t) .  
The response of the UHF state to the applied field is characterized by the time evolution 

of S$,(t) and S E i ( f ) ;  and we seek the linear response of the system to the total field.’ From 
standard linear response theory [16], this is given by 

hi@) = “h;(t) + i”’hi(t) 

dt‘ (Ol[O&), Hi( t ’ ) l [O)  ’ . (2.7) 
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where 10) denotes the unperturbed UHF state, and O&) = dHot 0 e-iHo' . Evaluation 
of equation (2.7) yields, after lengthy algebra, the frequency (0) dependence of the field- 
induced local magnetic moments and charges, namely 

D G Rowan et ul 

F'(o) = OX'"(W)M"(O). (2.8) " 
F(o) is a 4N-component vector (with N the number of sites) with elements 

including both spin and charge (c) components. Likewise M(o),  which acts as a generalized 
total field, has elements 

p = c. 
(2.10) 

The 4N x 4N matrix '~(0). with elements "x?(w), is the UHF susceptibility matrix, 
including in general spin-spin, chargecharge and spin-charge response functions. With 
the operator Ui, defined by 

(2.1 la) 

according to whether spin or charge components are considered, "xr(o) is given by 

e'"e(t)(ol[~i~(t) .  O~JO). (2.11b) 

This is readily evaluated in terms of the eigenvalues and eigenvectors of the UHF H", 
equation (2.1). and yields 

where q = Of, i, = O(Er - Ea) is the occupation number of single-particle state 01 in the 
UHF state, and for p = c we define r ~ & , ~  = -$,,rL. 

Equation (2.8) describes the dynamic response of the UHF state to the total field. Of 
direct physical relevance, however, is the response to the externally applied magnetic field. 
This follows directly from equations (2.8,lO): 

F"(o) = -yx'"(o)%"(o) (2.13) 

with the 4N x 4N Hermitian susceptibility matrix x(o) given by 

~ ( 0 )  = [I- U "x(o)Ql-' OX@) (2.14) 

where Q is diagonal, with QT = S,.&j for p E [ x ,  y. z }  and QT = -S,,S, for p = c. 
Equation (2.14) may also be obtained diagrammatically by consideration of the analogous 
time-ordered particle-hole Green functions, within the random phase approximation (RF'A) 
[16]. The linear response of any UHF state to an arbitrary external magnetic field is thus 
given exactly by the RPA susceptibility. 

Equations (2.12) and (2.14) are the basic RF'A equations. From (2.12), knowledge 
of the UHF state alone (the [Ea} and {ujaO]) enables a determination of "x(w) for any 
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o. x(o) then follows from (2.14), which is also practically convenient since, with [A,] 
and [Vy] denoting respectively the eigenvalues and eigenvectors of the matrix product 

~ ~ 

o r  x (a) = Ox(o)Q, Ebq. (2.14) reduces to 

(2.15) 

Thus, for given o, diagonalization of the 4N-dimensional Ox’(@) is sufficient to determine 
the RPA ~(o), hence circumventing explicit solutiou of the conventional RPA eigenvalue 
problem of dimension O(N2), and in consequence permitting study of much larger system 
sizes (N) if, as with disorder present, the problem must of necessity be solved at a finite-size 
level. Collective excitations occur at frequencies corresponding to the poles of ~ ( o ) ,  i.e. 
from (2.15) at o values such that 1 - UA,(o) = 0, which may thus be found pointwise 
WI. 

Most importantly, the mean-field (UHF) state is stable against particle-hole 
excitations-and thus a true minimum on the Hartree-Fock ‘surface’-provided the poles of 
x(o) occur solely on the real o-axis, or equivalently provided the static x(0) has no negative 
eigenvalues, i.e. from (2.15) provided 1, < U-‘ for all Ay(o = 0). In a broken spin 
symmetry regime there will of course be zero-energy Goldstone modes (max Ay(0)  = U - ’ )  
correspoudmg to global spin rotations of the mean-field spins: three such for a Heisenberg 
spin UHF solution (with non-collinear local moments); and two Goldstone modes for an 
king spin solution with fully collinear local moments. 

2.2. Zsing-like mean-field shtes 

The UHFcRPA equations above are general, and possibly deceptively simple. With a 
Heisenberg spin solution, for example, spin and charge excitations are inherently 
coupled, with no partitioning of the susceptibility tensor ~ ’ ” ( o ) .  However, the problem 
simplifies somewhat for an king-like UHF solution with wholly collinear local moments 
lying in the z-direction. 

First, the self-consisteut UHF singleparticle states are pure spin-orbitals, lYcu} = 
Ciuj,,I&}; and Ha (equation (2.1)) becomes spin separable, P‘ = E, H,“, with H: 
(such that H,lYcu) = EaulYau)) given by 

Here 6fu, the effective U spin site enegy~for site i, is given by 

€io = € j  + U&, = €i + $U[Ei - Ul.Lil (2.16b) 

in terms of the local charge rii (as in (2.2b)) and the sole (z-) component of the local 
magnetic moment, 

(2.17) 

Secondly, transverse spin excitations decouple from longitudinal spin and charge 
excitations, the resultant RF’A xJ’”(w) partitioning into two disjoint 2N x 2N sectors. The 
lowest-lying excitations about the UHF state occur in the transverse spin sector, xJ’”(w) with 
p E (x, y} ,  on which we focus. Further, with a trivial transformatiou from local magnetic 
fields hjx/hjy to hj* = hjz f ihj,,, the transverse susceptibility itself separates into two 
disjoint N x N blocks, x-+(w) and x+-(w), each of which (for w = 0) contain a single 

- 
p.  I = - 2s. IT - - 17. ‘f - f i i r .  
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Goldstone mode provided the UHF state is particlehole stable. The resultant x-+(w) is 
given simply by the more familiar RPA form 

(2.18) 
with the corresponding UHF Ox-+(@) given by 

D G Rowan et a1 

x-+(o) = [l- VOx-+(o)l- 1 0  x -+ (0) 

m 
dt e'"'O(t)(0l[Si-(f), Sj+]lO) (2.19a) 

and thus by 

(2.196) 

in terms of the eigenvalues (Een] and (pure real) eigenvector coefficients (ai,] of the Ising 
spin Hamiltonian, equation (2.16~). 

Finally, excepting the w-poles of 'x-+(o) (which do not coincide with those of 
x-+(w)), Ox-+@) is a real, symmetric N x N matrix; and for any such w may thus 
be diagonalized by an orthogonal matrix v such that ox"(w)vy =hyvy. From (2.18) the 
RPA x-+(o) is also diagonalized by vy, with eigenvalues A y / ( I  - U A y ) ,  whence 

(2.20) 

is the Ising-like analogue of equation (2.15). 

3. Magnetic phases 

Self-consistent UHF was used recently IS] to find locally stable, inhomogeneous mean-field 
ground states for the &filled Gaussian site-disordered model on a simple cubic lattice. For 
any disorder realization at a chosen point in the (i, o)-plane, the mean-field ground state 
was determined on energetic grounds. The bulk magnetic character of UHF solutions is 
determined by magnetic ordering of the local moments pi = 23i,, reflected in the relative 
phases of the (pi] as characterized by the spin density [71 

~,(k) = N-' C p i  exp(ik. R,). (3.1) 
i 

For all (A, 0) studied, the local moment phases were found to be king-like, with 
S;M = S,(O) = 0; and three distinct magnetic phases occur [8]: disordered paramagnetic 
(p), antiferromagnetic (AF) and spin-glass-lie (SG) phases. In the non-interacting limit 
U = 0, the ground state is trivially paramagnetic (pi = 0 for all sites i). For all 0 > 0, in 
the = 0 pure Hubbard limit, and because the simple cubic lattice is bipartite, the UHF 
ground state is a pure two-sublanice N h l  AF 1181, with_ IS,(k)l =&,&I where l/rJ E lpil 
is the sublattice moment magnitude. Within the (&, U)-plane, at sufficiently large U the 
UHF ground state is a disordered AF: IS,(k)l is clearly dominated by a strong k = x peak, 
with magnitude somewhat less than but on the order of the mean moment magnitude per 
site, lpl = N-' xi I/ri]. For smaller interaction strengths an SG phase results: IS,(k)l 
shows small peaks at numerous k-vectors, with none dominant and no hint of long-ranged 
order, and the P phase is found to persist at sufficiently weak interaction strengths. The 
resultant UHF phase diagram in the (A, O)-plane (for N = 512 sites [SI) is shown as part 
of figure 1. Metallic/insulating phase boundaries are also indicated, consisting of metallic 
(M), gapless insulating (I) and gapped Hubbard insulating (HI) phases; full details are given 
in [SI. 
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0.7- 
i 

I 

AFHl / AFI 

3 

Figure 1. Mean field phases in the disorder-interaction plane, (6. fi). AF: antiferromagnet; S G  
spin glass; P: paramagnet; M metal, I: insulator; HI: Mou-Hubbard insulator. Crosses show 
the phase boundary to local moment formation, and the AF-SG transition boundary, deduced 
from the present study. 

The magnetic phase boundaries of [8] were obtained simply by direct sampling of a 
wide range of possible self-consistent UHF states. No attempt was made to study directly 
transitions between different phases, and the results were not always unambiguous: for 
example, it was not clear whether a direct AF-SG transition occurs. Here, we thus consider 
first the magnetic phase boundaries via a stability analysis at RPA level, beginning with the 
phase boundaq to local moment formation coming from’the paramagnetic regime. 

3.1. Local moment formation 

The paramagnetic (P) phase is confined to weak interaction strengths (figure I), but its 
occumence over a non-vanishing e interval for A = 0 accords with the expectation 
that disorder, in removing the Fermi surface nesting characteristic of the unperturbed 
(6 = 0 = d) lattice, will lead to a P regime for sufficiently low e, analogous to the 
$-filled pure Hubbard model on non-bipartite cubic lattices [19]. The HF solutions here 
are of the reshicted type, and the phase boundary to local moment formation is obtained 
readily using equations (2.18,20) for x-+(o = 0) (henceforth denoted x). Namely, for 
any given disorder realization at a chosen 6, increase fi from the non-interacting limit and 
find the critical interaction strength ec(&) for which the largest eigenvalue, ma(&,), of O x  
becomes equal to l / U ,  signalling an instability of the paramagnetic (restricted) mean-field 
solution to a broken symmetry local moment phase. Then (and only then) examine the 
variation of fic(6) with different disorder realizations at the chosen 6. 

The results of this are indicated by crosses on the phase diagram, figure 1; and the 
variation of fic(d) with disorder realizations is small, within - +0.02 of the mean for all 
d. Full agreement with the UHF phase boundary is clearly found (in all cases within error 
bars). Further, Fourier resolution of the Goldstone eigenvector {U&) at the instability point 
shows essentially uniform contributions from most IC-values, i.e. the transition is to a SG 
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phase, again in agreement with the mean-field results. In fact, this occurs for disorders as 
low as d = 0.005, suggesting that for all d > 0 an SG moment phase is first accessed. 

The above procedure contrasts with a common approximation (see e.g. [5J) in which, 
instead of sampling individual disorder realizations, an attempt is made to infer the phase 
boundary to local moment formation via an approximate calculation of the disorder- 
averaged susceptibility matrix %. Disorder averaging restores translational invariance, and 
if equation (2.18) is iterated in powers of Ox, and all fluctuation moments (Ox - O%)" 

neglected, then Fourier transformation of the resultant 2 yields the algebraic expression 
j(k) = woT(k)/(l - U O j ( k ) ) .  This X(k) must diverge at a single k-vector-for any 
disorder A. In fact, it predicts [5] that the local moment phase first accessed with increasing 
8 is always an AF, k = T, with the critical fiC(d) increasing with increasing disorder. This 
is strongly at variance with the correct result, pointing to the importance of disorder-induced 
fluctuations in O x  and the inapplicability of a generalized Stoner criterion. 

D C Rowan et a1 

3.2. AFand S G p h e s  

Local moment formation, and hence the P-SG boundary, is thus accessible via the restricted 
HF states appropriate to the P phase (which we note appear to be the sole UHF solutions in 
the paramagnet [SI). However, equations (2.18-20) apply equally to the magnetic phases 
provided the underlying broken symmetry UHF states are stable, i.e. provided A, < U-' 
for all modes y other than the characteristic Goldstone mode, max(A,) = U-'. An RPA 
stability analysis may thus also he applied to the AF-SG phase boundary in figure 1. 

To this end we note another helpful Limit of the f-filled sitedisordered model. Namely, 
for any finite disorder, 6, and in the strong-coupling l i t  8 + 00 (in practice 8 >> A), 
the model reduces to the non-disordered pure AF Heisenberg model. Thus, for any disorder 
realization at a chosen value of d, the disorder is effectively 'switched on' as fi is decreased 
from strong coupling. This enables properties of the self-consistent mean-field states to be 
tracked continuously in fi through the disordered AF and towards the SG phase, with the 
mean-field ground state recalculated self-consistently at each successive 8 point. 

To illustrate this, figure 2 shows S,(k = ?r) against fi for a single disorder realization 

0.0 j I I I 
2 4  2.5 2.6 ZT ZE 2.9 3.0 3.1 

u/t 
Figure 2. S&T) against fi for a single disorder realization at d = 0.25. showing the 
antiferromagnetkspin glass transition. 
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at i = 0.25 (and for N = 216 sites). &IC) is defined by 

= I S , ( W l / ~  I S m l  (3.2) 
k 

with $(IC) as in equation (3.1). S,(T) may be regarded essentially as the AF order 
parameter, and for the pure two-sublattice N&l AF occurring at i\ = 0, &(IC) = 
As fi is decreased through the AF phase, &(T) decreases continuously. That the state 
is indeed AF is confirmed from the full IC dependence of S,(k), which is dominated by 
IC = r as described earlier; and the fact that S,(T) -= 1 simply reflects that the AF, while 
exhibiting long-ranged order, is increasingly 'dirty' due to the disorder, see also [8]. At 
a critical interaction strength, fi; = 0.228, the AF state becomes unstable and changes to 
a SG phase; S,(?r) correspondingly undergoes a discontinuous change at fiC to a smaller 
value characteristic of the SG (whose scaling with system size, N ,  we examine below). 

In tandem with this behaviour, the largest eigenvalue A- = max(A,,) of the static 
UHF susceptibility matrix O x  (see (2.20)) is precisely 1/U in either broken symmetry 
phase; this reflects both the presence of the characteristic Goldstone mode--corresponding 
to a global spin rotation which preserves the relative phases, of the mean-field spins-and !he 
particle-hole stability of the mean-field states. Note that while the AF Goldstone mode leads 
throughout the AF phase to the expected divergence in the (w = 0) staggered susceptibility 
~ ( k  = T). in neither phase alone do the Goldstone modes contribute to the corresponding 
uniform susceptibility ~ ( k  = 0). since the spatial Fourier transform of the Goldstone 
eigenvector [vi,,) is readily shown to be proportional to &(IC), and Sy = &(O) = 0 
for all Ising-like UHF solutions. However, as fi approaches from either phase the transition 
point at fit, a second mode A. tends to l/Uc from below, signalling the AF+SG transition 
evident in figure 2 (and enabling thereby an accurate determination of the critical fiJ. 

At the first-order transition point there are thus in effect three soft modes: one Goldstone 
mode for the AF (fi = fie+), one Goldstone mode for the SG (fi = fit-) and a thud soft 
mode which interconnects the AF.and SG solutions. The latter leads to a divergence 
in the uniform ;(CO) as 0 + fit, namely x ( o ) ~ =  A I U  - fip with an exponent g = 1 
determined from careful numerical analysis. We do not, however, believe that the divergence 
will itself survive the thermodynamic limit, since the soft-mode eigenvector [ui,]-which 
interconnects the AF and SG solutions via a global but non-phase-preserving spin rotation- 
has weight on at least as many IC-vectors as contribute to &(IC) for the SG phase; and if (as 
shown below) S&) is of order O(N-') in the SG, we expect the susceptibility divergence 
to be washed out in the thermodymanic l i t .  

An AF-SG transition thus indeed appears to occur, and to be first order, and the 
behaviour described above occurs for each disorder realization at any chosen i\, although 
at the finite-size level there is somewhat more variation in fic(&) with disorder realizations 
than in the P-SG case, up to - f0.04 from the mean at larger i 2 0.5. With this procedure 
we find thereby the AF-SG phase boundary indicated by crosses in figure 1, which is in 
good agreement with that inferred from the indirect approach of [8]. 

Finally, we comment on the scaling with-system size ( N )  of &(IC) in the SG phase, 
noting first that, in an AF regime, S,(x) (as shown in figure 2) does not show a significant 
variation with N .  As remarked above, however, the SG &(IC) shows small peaks at 
numerous IC-vectors, with none dominant. By way of-illustration, figure 3 shows, for 

= 0.25 and fi = i ,  a logarithmic plot of the N dependence of the disorder-averaged 
$(k) at each pemhtted non-zero k-vector, and for N = 64, 216,512 and IO3 sites. From 
the straight line with gradient -1 (indicated on the figure) it is clear that &(IC) -'O(N-') 
for all IC, as indeed expected for a SG phase. 



6862 D G Rowan et al 

-1 + 

I I I 
4.0 4.5 5.0 5.5 6.0 6.5 7.0 

Figure 3. At ( I .  b) = (4, i )  in lhe SG phase: Insz(k) for each non-zero k-vector versus 
In N, for N = U. 216,512 and Id sites. The straight line shown has gradient -1. 

4. Inhomogeneous magnetic response 

Our aim here. is to examine at RPA level the magnetic response of the disordered local 
moment phases on an inhomogeneous scale, focussing in particular on a site differential 
resolution of the bulk susceptibility into its local components. 

To this end we consider specifically application of a static, uniform field to the 
system, and (see section 2.1) define components of the uniform static susceptibility via 
x r  N-’ xi, xr. Due to net charge conservation, xf = 0 (see (2.11)): thus, only 
the magnetic sector of x:” is non-zero. Whether the stable UHF solutions are Ising- 
like or Heisenberg-like, the presence of Goldstone modes in the magnetic sector implies 
that, under the applied field, the mean-fieId spins undergo a global (spin flop) rotation 
such that the overall response in the field direction is equal to the largest eigenvalue 
of the matrix (x:”), thus minimizing the second-order field contribution to the energy, 
A E / N  = -$ E,, h,X:”h, (where h here denotes the applied field). For the particular 
case of Ising-like mean-field states, appropriate to the sibdisordered model, x r  is diagonal 
with components x;+, x:- and xf’. Throughout most of the phase plane, xu+ >> x?, 
whence the spin-flop transition is such that the king spin-axis lies perpendicular to the 
applied field. Thus, only the transverse static susceptibility x;+ = x:- = xu is probed; 
and on this we focus. 

Electron interactions, in leading to local moment formation, and disorder in producing 
a range of local site environments, naturally result together in a spatially inhomogeneous 
distribution of local mean-field magnetization and charge. As mentioned above, this is true 
even in the predominant AF phase: although the {&I are ‘phase locked‘ to produce net AF 
order, the moment carrying sites are distributed randomly in space, and disorder leads to 
a strong site differential dishibution of local moment mngm’zudes. As discussed in [SI, the 
site moment magnitude Ipj[ is governed largely by the bare site energy E ,  which may be 
considered in effect as a ‘window’ on its local environment, and sites with bare site energies 
1q[ 5 = EF are found to carry the strongest moments, while those outside this range 
carry progressively weaker moments, being predominantly doubly occupied by electrons 
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(ci 5 -$U) or empty (ci 2 +U). Accordingly [SI, the inhomogeneous distribution of 
local magnetization is generally well characterized by lp(e)I = N;' Ci:eiq Ipil. the mean 
moment magnitude per site of given site eneIgy E (with N, the number of such sites, given 
via NJN = g(6) as). We seek now to study the analogous site differential resolution of 
X U .  

4.1. Site-disordered model 

To probe the inhomogeneous magnetic response of the system, and relate it to the mean- 
field local moment distribution Ip(e)I, note that the bulk static x. may be written as 
xu = N-' ci x i .  where xi (E x;') given by xi = xi xij  is the local RFA susceptibility 
of site i ,  and we deconvolute xu as 

where, for any disorder realization at the chosen disorder d, 

is the mean local susceptibility per site of given site energy E .  ~ ( e )  thus embodies the 
inhomogeneous response of the disordered local moment dislribution, itself reflected in 
I ~ ( E ) [ .  To illustrate the effect of disorder on ~ ( e ) .  we consider a fixed interaction strength 
U = 1, with increasing disorder i\ = 4, i ,  i. Figure 4 shows X ( E )  and I ~ ( E ) [  against 
B = e / B  for d = 4 (a), a (b)qd f (c), averaged over a number of typical disorder 
realizations for N = 216 sites. To relate this parameter range to that of the metal4gapless) 
insulator transition (MIT), figure 1 shows that at d = the system is a gapless insulator, 
while by i\ = the system is well within the metallic regime, and as d is increased fiuther 
an MIT at d N 0.56 is approached. 

At low disorder, d = 4, the system's response is rather uniform: the vast majority of 
sites carry strong local moments, and x ( s )  for such is close to the d = 0 pure Hubbard 
h i t  of 0.39/t (where xi = xa for all  sites i ,  whence x ( E  = 0)  = xu = 0.39/t). In 
addition, X(E) is only slightly enhanced over the local Pauli susceptibilities appropriate to 
the non-interacting but disordered limit, where X ( E )  = D(E;  EF) .  the local density of Fermi 
level states also shown in figure 4. However, as clearly shown by figure 4, increasing 
disorder leads to a strong, site differential enhancement in the local susceptibilities. The 
enhancement is greatest for 121 5 $6-i.e. the strong-local-moment sites-and occurs even 
thougb.the mean-field local moment profile lp(e)I itself varies little with disorder. This is 
already evident by d = a in the metal (figure 4b) but it increases markdy  with disorder 
until. (figure 4c) by = $-close to the MIT-x(€) for the strong-localimoment sites is 
more than an order of magnitude larger than either that for the d = 0 or 6 = 0 limits; 
and is similarly in excess of the ,'Pauli-like' ~ ( c )  values typical of non-moment sies~with 

This behaviour has a ready physical explanation. That x ( e )  is largest on strong-local- 
moment sites reflects appreciable overlap of low-o collective transverse spin excitations 
on these sites, as is evident from the Lehmann representation of xi(@). Direct analysis 
[ZO] of the low-o poles of x ( w )  shows these to be spin-wave-like for the (& 6) values 
in question, and hence naturally associated with the strong-moment canying sites, and the 
disorder-induced enhancement in X ( E )  .thus reflects a progressive softening of the ,low-o 
transverse spin spectrum with increasing disorder. 

121 2 $6. , 
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Figure 4. Distribution of local susceptibilities ~ ( 6 )  against C = E / B  (solid lines), for 0 = f 
and (a) 4 (b) and $ (c). Also shown are the corresponding local moment distributions 
Ip(r)l (dashed lines) and the non-interacting il = 0 Pauli local susceptibilities (dotted lines). 
Note the change of veltical scale in (c). 

= 

What effect is the above behaviour likely to have on observable properties of disordered, 
interacting systems? Consider two complementary probes of the magnetism. The total 
uniform spin susceptibility, probed for example by ESR methods, is simply the sum of all 
individual, local susceptibilities; see (4.1). In the present case, as d is increased towards the 
MIT., the bulk xu increases, since the marked enhancement in x (E) for strong-moment sites 
more than compensates for the diminishing fraction of such sites. (Recall that while the mean 
local moment magnitudeper site of given E, I ~ ( E ) [ ,  varies little with 8, the overall fraction 
of strong-moment sites - 2#"g(~)  dc, and thus decreases progressively as the disorder 
is increased.) A complementary probe of local magnetism is the Knight shift in an NMR 
experiment, the local Knight shift under the electron-nuclear contact interaction, Ki, being 
proportional to the local site susceptibility, xi. Clearly, therefore, inhomogeneity in the local 
susceptibilities (xiJ-as reflected in x(~)-will lead to a distribution of local Knight shifts, 
with sites canying the strongest local moments experiencing the largest signal displacement. 
In practice, however, an NMR spectrometer has a finite field range, outside which resonances 
are not detected; this range is typical of Pauli-like susceptibilities. The findings above thus 
imply that, as disorder is progressively increased in the metallic regime, the very sites 
which dominate the observed bulk susceptibility xu may be completely projected out of 
the detected Knight shift signal, which will thus by contrast be dominated by the Pauli-like 
X(E) of sites outside the local moment range. 

This behaviour is qualitatively close to that observed by Alloul and Dellouve [21] 
for low-temperature Si:P, as the phosphorus number density p is decreased progressively 
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in the metallic regime, towards and through the MIT occurring at a critical density 
pc N 3.8 x IO '*C~-~.  The measured bulk spin susceptibility is progressively and strongly 
paramagnetically enhanced over the non-interacting Pauli value (the enhancement beginning 
at p - Zp,). By contrast, a steadily diminishing fraction of spins is picked up in the 
average detected 31P Knight shift (K), which falls off rapidly but continuously as the MIT 
is approached and crossed. The authors themselves ascribe this behaviour to the 'projecting 
out' of an increasing fraction of P sites-intuitiveIy, those carrying strong local moments- 
as p is decreased towards and through pc .  The site-disordered Anderson-Huhbard model is 
not of course directly applicable to SkP, which is well caricatured by a spatially disordered 
AHM [IO]. To ensure the findings above are not specific to the sitedisordered case, we 
have therefore carried out a preliminary study of the spatially disordered system, on which 
we now briefly report. 

4.2. Spatially disordered model 

The Hamiltonian for the spatially disordered system is: 

(4.3) 

Here the quenched disorder occurs in the distribution of hopping matrix elements, t i j  = 
t ( R i j )  with Rij = IRi - Rjl, arising from spatial disorder in the site ('P') cenm of mass 
[RI. tij is taken to be of the form 

tij = t d l +  Rij/aH) exp(-Rij/ax) (4.4) 
with aH the effective Bohr radius; specification of iny (Ri} prescribes a particular realization 
of the (tij). The model is again~characterized by two parameters: the scaled interaction 
strength U/to,  and the reduced density measure a> = piaH.  The hand is again half filled. 

The model is treated essentially as before. For illustration we choose U/to = 5/8 (a 
reasonable choice for Si:P), and study a density regime spanning the MIT. A previous HF 
study [IO] of the model has shown clearly the instability of the disordered Fermi liquid to 
local moment formation, via analysis of restricted HF states; but since these non-magnetic 
solutions are found to be unstable for all densities studied, consideration of broken symmetry 
UHF is a necessary prerequisite to the study of the magnetic response of the disordered 
local moment phase. 

In the 8 = 0 non-interacting limit the critical value of a; for the Anderson MIT is 
known to be [22] af = 0.22. From study of the inverse participation ratio for systems of 
several hundred sites, similar to those used 181 for the sitedisordered model-and eschewing 
the question of particle-hole stability of the broken symmetry UHF states, to which mean- 
field properties such as e.g. the ipr and distribution of local moment magnitudes are found 
to be insensitive (see [8])-we estimate af 2: 0.28 for U/to. = 5/8; the precise value is not 
however central to the following analysis. 

To study the magnetic response, it is of course imperative'that the UHF solutions are 
particle-hole stable. These are almost invariably Heisenberg-like, with non-collinear local 
moments whose magnitudes we continue to denote by (= (E, $e)$. Figure 5 shows 
the resultant probability density P ( l p [ )  = N-' CiS(IpiI - 1111) for a wide density range 
spanning the MIT. From this it is clear, as expected physically for the spatially disordered 
system (and in contrast to the site-disordered model), that with increasing disorder- 
decreasing density-an increasing fraction of sites carry strong local moments. For example, 
the fraction of sites with /pi I =- 0.5 is -16% at a* = 0.35 and -25% at a' = 0.3 (rising to 
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F i  5. Probability densily of local moment magnitudes for the spatially disordered model. 
P(lpl) against Ipl. For (IPo = and a* = p i a x  = 0.35 (3). 0.30 @), 0 2 5  (c) and 0.19 (d). 

-45% at a* = 0.25 in the insulator); for Ip.il > 0.75, the corresponding figures are -1% 
and 6% (and -20%). 

Due to the slow convergence rate of the iterative self-consistency procedure for UHF 
solutions which are Heisenberg-like, and the need to sample many disorder realizations at 
any chosen a’, system sizes of only N = 50 sites were employed; this is small, but sufficient 
to make the principal point. With the resultant mean-field solutions, the total uniform 
static susceptibility may be calculated, accounting carefully for the spin flop transition as 
described at the beginning of section 4. The total uniform static susceptibilityis again given 
by xu = N-’ Ci xi, where the corresponding local susceptibility xi = xj[mTxmlij with 
m the eigenvector corresponding to the largest eigenvalue of (x:”]. 

For the site-disordered model, local susceptibilities were studied via x ( E ) ,  the mean 
local susceptibility per site of given siteenergy 6. In the spatially disordered problem there 
is no such easy measure of ‘local environment’, but one does expect intuitively that the 
larger the local moment of a site, the greater will be its typical local magnetic response. In 
analogy to equations (4.1.2) we thus deconvolute xu as 

1 

xu = x(l~l)p(lf i l) dlpl 

where, for any disorder realization at the chosen a*, 

x(lpl)=NLf xi 
~ i w ~ i = i w l  

(4.5) 

(4-6) 

is the mean local susceptibility per site of given local moment magnitude lp[, and NI,,, 
(such that Nlwl/N = P(lp[)  dlpl) is the number of such sites. The I@[ dependence of 
x(lp.1) thus reflects the inhomogeneous magnetic response of the disordered local moment 
disbibution, itself embodied in P(lp1). 

Figure 6 shows the resultant ~ ( l p l )  against [pl for a* = 0.35 and 0.30. The system is 
metallic in either case, the former corresponding to a density of around twice that for the 
ha, the latter to about 25% in excess of pc. As with the site-disordered model, strong site 
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Figure 6. Local susceptibilities x(lrrl) against IpI for the spatially disordered model, for 
a’ = 0.35 (a) and 0.30 (b), both in the metallic regime. The Pauli susceptibility for the 
corresponding non-interacting electron gas at the same a* is marked on the vertical axis. 

differential enhancement of the local susceptibilities is again evident: x(lp[)  for the sbrong- 
local-moment sites is well over an order of magnitude larger than the Pauli susceptibility for 
the corresponding non-interacting electron gas at the same a*, as marked on the vertical axis; 
and is even more largely in excess of x(lpJ) values typical. of the statistically~predominant 
low-Ip] sites (although we note in passing that x( ]p ] )  for these sites will be underestimated, 
since for any finite-size system in the non-interacting or restricted HF limits, the zero- 
frequency xi values calculated duectly via equations (2.12,14) are strictly zero, see also 

Jn the spatially disordered case too, therefore, strong site differential magnetism is 
evident, resulting in a strongly inhomogeneous distribution of local Knight shifts. With 
decreasing density, an increasing fraction of the strong-local-moment sites will clearly be 
projected out of the detected Knight shift signal, and will dso contribute to the progressive 
enhancement of the total x,,. 

In contrast to the sitedisordered model, how ever,^ there is a further important 
consideration in the spatially disordered system. It has been argued [ll] that low- 
temperature thermodynamics in the metallic phase-focusing in particular on the magnetic 
susceptibility-is dominated by localized spin excitations in very rare spatial regions. The 
basic idea [ 1 I] is that at any mean number density p. rare statistical density fluctuations, lead 
to a non-vanishing probability of producing an isolated spin in a region of radius r >> p-4. 
which is sufficiently isolated from the rest of the system that its exchange coupling to 
conduction electrons’is exponentially small; and that the resultant local moments remain 
unquenched (by the Kondo effect in particular) down to the lowest temperatures, whence 
such rare sites dominate the bulk susceptibility at low T .  Support for this view comes also 
from recent work [23] on a spatially disordered single-impurity Anderson model. 

The present study does not of course consider the Kondo effect (and is for T = 0). It is 
however statistically very unlikely that we produce these rare density fluctuations in the small 
finitssize calculations above: such quasi-isolated sites would show up as having a local 
moment Ipjl exponentially close to unity, with a massively enhanced xi and an extremely 
low-frequency, localized spin excitation in the corresponding RPA spectrum. Were we to 
detect them, they would overwhelmingly dominate (and almost certainly overestimate) the 
bulk xu,  even though they would constitute but a rather small fraction of sites carrying 
significant local moments. Although we do not pick up these rarest sites, which will 
dominate xu, we believe it likely that the large enhancement of the local susceptibilities 

[5J). 
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for the strong-local-moment sites that we do observe will be important in determining the 
fraction of sites which are projected out of the detected Knight shift. Support for this 
resides in the observation [2l] that, for p in the vicinity of pe. some 50% or more of 31P 
nuclei are projected out of the detected Knight shift, with those that ate detected being 
rather insensitive to T; whereas by contrast some 5-10% of local moments dominate bulk 
thermodynamic properties (see e.g. 1231) in strongly T-dependent terms. 
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